The RFB Protocol

Tristan Richardson
RealVNC Ltd
(formerly of Olivetti Research Ltd / AT&T Labs Cambridge) *

Version 3.8
8 March 2005

Contents
1 Introduction 3
2 Display Protocol 3
3 Input Protocol 4
4 Representation of pixel data 4
5 Protocol extensions 5
6 Protocol Messages 5
6.1 Initial Handshaking Messages 6
6.1.1 ProtocolVersion., 7
6.1.2 Security 8
6.1.3 SecurityResult 10
6.1.4 ClientInitialisation 11
6.1.5 Serverlnitialisation 12
6.2 Security Types. e 14
6.2.1 None 15
6.2.2 VNC Authentication 16
6.3 Client to Server MmessSages v v v v v vt e e e 17
6.3.1 SetPixelFormat 18

*James Weatherall, Andy Harter and Ken Wood also helped in the design of the RFB protocol

CONTENTS 2

6.4

6.5

6.6

6.3.2 FixColourMapEntries 19
6.3.3 SetEncodings 20
6.3.4 FramebufferUpdateRequest 21
635 KeyEvent 22
6.3.6 PointerEvent 24
6.3.7 ClientCutText 25
Server to client messagesol 26
6.4.1 FramebufferUpdate 27
6.4.2 SetColourMapEntries 28
643 Bell 29
6.44 ServerCutText 30
Encodings 31
6.5.1 Rawencoding. L. 32
6.5.2 CopyRectencoding 33
6.53 RREencoding 34
6.54 CoRREencoding 35
6.5.5 Hextileencoding, 36
656 ZRLEencoding., 38
Pseudo-encodings Lo 41
6.6.1 Cursor pseudo-encoding 42

6.6.2 DesktopSize pseudo-encoding 43

1 INTRODUCTION 3

1 Introduction

RFB (“remote framebuffer”) is a simple protocol for remote access to graphical user
interfaces. Because it works at the framebuffer level it is applicable to all windowing
systems and applications, including X11, Windows and Macintosh.

The remote endpoint where the user sits (i.e. the display plus keyboard and/or pointer)
is called the RFB client. The endpoint where changes to the framebuffer originate
(i.e. the windowing system and applications) is known as the RFB server.

RFB Server RFB Client

RFB =

Protocol

RFB is truly a “thin client” protocol. The emphasis in the design of the RFB protocol
is to make very few requirements of the client. In this way, clients can run on the
widest range of hardware, and the task of implementing a client is made as simple as
possible.

The protocol also makes the client stateless. If a client disconnects from a given server
and subsequently reconnects to that same server, the state of the user interface is pre-
served. Furthermore, a different client endpoint can be used to connect to the same
RFB server. At the new endpoint, the user will see exactly the same graphical user
interface as at the original endpoint. In effect, the interface to the user’s applica-
tions becomes completely mobile. Wherever suitable network connectivity exists, the
user can access their own personal applications, and the state of these applications is
preserved between accesses from different locations. This provides the user with a
familiar, uniform view of the computing infrastructure wherever they go.

2 Display Protocol

The display side of the protocol is based around a single graphics primitive: “put
a rectangle of pixel data at a given x,y position”. At £rst glance this might seem
an ineffcient way of drawing many user interface components. However, allowing

3 INPUT PROTOCOL 4

various different encodings for the pixel data gives us a large degree of Xexibility in
how to trade off various parameters such as network bandwidth, client drawing speed
and server processing speed.

A sequence of these rectangles makes a framebuffer update (or simply update). An
update represents a change from one valid framebuffer state to another, so in some
ways is similar to a frame of video. The rectangles in an update are usually disjoint
but this is not necessarily the case.

The update protocol is demand-driven by the client. That is, an update is only sent
from the server to the client in response to an explicit request from the client. This
gives the protocol an adaptive quality. The slower the client and the network are, the
lower the rate of updates becomes. With typical applications, changes to the same area
of the framebuffer tend to happen soon after one another. With a slow client and/or
network, transient states of the framebuffer can be ignored, resulting in less network
traffc and less drawing for the client.

3 Input Protocol

The input side of the protocol is based on a standard workstation model of a keyboard
and multi-button pointing device. Input events are simply sent to the server by the
client whenever the user presses a key or pointer button, or whenever the pointing
device is moved. These input events can also be synthesised from other non-standard
I/0 devices. For example, a pen-based handwriting recognition engine might generate
keyboard events.

4 Representation of pixel data

Initial interaction between the RFB client and server involves a negotiation of the for-
mat and encoding with which pixel data will be sent. This negotiation has been de-
signed to make the job of the client as easy as possible. The bottom line is that the
server must always be able to supply pixel data in the form the client wants. However
if the client is able to cope equally with several different formats or encodings, it may
choose one which is easier for the server to produce.

Pixel format refers to the representation of individual colours by pixel values. The
most common pixel formats are 24-bit or 16-bit “true colour”, where bit-£elds within
the pixel value translate directly to red, green and blue intensities, and 8-bit “colour
map” where an arbitrary mapping can be used to translate from pixel values to the
RGB intensities.

Encoding refers to how a rectangle of pixel data will be sent on the wire. Every rectan-
gle of pixel data is pre£xed by a header giving the X,Y position of the rectangle on the
screen, the width and height of the rectangle, and an encoding type which specifes the
encoding of the pixel data. The data itself then follows using the specifed encoding.

5 PROTOCOL EXTENSIONS 5

5 Protocol extensions

The protocol can be extended by adding new encoding types. The encoding types
de£ned at present are Raw, CopyRect, RRE, CORRE, Hextile and ZRLE. In practice we
normally use only the ZRLE, Hextile and CopyRect encodings since they provide the
best compression for typical desktops.

In addition to genuine encodings, a client can request a “pseudo-encoding” to declare
to the server that it supports a certain extension to the protocol. A server which does
not support the extension will simply ignore the pseudo-encoding. Note that this means
the client must assume that the server does not support the extension until it gets some
extension-specifc confrmation from the server.

It is important that different encoding and pseudo-encoding types do not clash. To
avoid such problems, RFB protocol versions and encoding types are maintained by
Real VNC Ltd.

See section 6.5 for a description of each of the encodings and section 6.6 for a descrip-
tion of current pseudo-encodings.

6 Protocol Messages

The RFB protocol can operate over any reliable transport, either byte-stream or message-
based. There are two stages to the protocol; an initial handshaking phase followed by
the normal protocol interaction.

The initial handshaking consists of ProtocolVersion, Security, ClientInitialisation and
Serverlnitialisation messages, as described below. Note that both client and server
send a ProtocolVersion message.

The protocol proceeds to the normal interaction stage after the Serverlnitialisation
message. At this stage, the client can send whichever messages it wants, and may
receive messages from the server as a result. All these messages begin with a message-
type byte, followed by any message-speci£c data.

The following descriptions of protocol messages use the basic types U8, Ul6, U32,
S8, S16, S32. These represent respectively 8, 16 and 32-bit unsigned integers and
8, 16 and 32-bit signed integers. All multiple byte integers (other than pixel values
themselves) are in big endian order (most signifcant byte £rst).

The type PIXEL is taken to mean a pixel value of bytesPerPizel bytes, where 8 X
bytesPer Pizel is the number of bits-per-pixel as agreed by the client and server —
either in the Serverlnitialisation message (section 6.1.5) or a SetPixelFormat message
(section 6.3.1).

6.1 INITIAL HANDSHAKING MESSAGES

6.1 Initial Handshaking Messages

6.1 INITIAL HANDSHAKING MESSAGES 7

6.1.1 ProtocolVersion

Handshaking begins by the server sending the client a ProtocolVersion message. This
lets the client know which is the highest RFB protocol version number supported by
the server. The client then replies with a similar message giving the version number of
the protocol which should actually be used (which may be different to that quoted by
the server). A client should never request a protocol version higher than that offered
by the server. It is intended that both clients and servers may provide some level of
backwards compatibility by this mechanism.

The only published protocol versions at this time are 3.3, 3.7 and 3.8 (version 3.5 was
wrongly reported by some clients, but this should be interpreted by all servers as 3.3).
Addition of a new encoding or pseudo-encoding type does not usually require a change
in protocol version, since a server can simply ignore encodings it does not understand.

The ProtocolVersion message consists of 12 bytes interpreted as a string of ASCII
characters in the format "RFB xxx.yyy\n" where xxx and yyy are the major and
minor version numbers, padded with zeros.

No. of bytes | Value

12 "RFB 003.003\n" (hex 52 46 42 20 30 30 33 2e 30 30 33 Oa)
or

No. of bytes | Value

12 "REB 003.007\n" (hex 52 46 42 20 30 30 33 2e 30 30 37 Oa)
or

No. of bytes | Value
12 "RFB 003.008\n" (hex 5246 42 20 30 30 33 2e 30 30 38 Oa)

6.1 INITIAL HANDSHAKING MESSAGES 8

6.1.2 Security

Once the protocol version has been decided, the server and client must agree on the
type of security to be used on the connection.

Version 3.7 onwards The server lists the security types which it supports:

No. of bytes Type [Value] | Description
1 Us number-of-security-types
number-of-security-types | U8 array security-types

If the server listed at least one valid security type supported by the client, the
client sends back a single byte indicating which security type is to be used on
the connection:

No. of bytes | Type [Value] | Description
1 Us security-type

If number-of-security-types is zero, then for some reason the connection failed
(e.g. the server cannot support the desired protocol version). This is followed
by a string describing the reason (where a string is specifed as a length followed
by that many ASCII characters):

No. of bytes | Type [Value] | Description
4 U32 reason-length
reason-length | U8 array reason-string

The server closes the connection after sending the reason-string.

Version 3.3 The server decides the security type and sends a single word:

No. of bytes | Type [Value] | Description
4 U32 security-type

The security-type may only take the value 0, 1 or 2. A value of 0 means that the
connection has failed and is followed by a string giving the reason, as described
above.

The security types de£ned in this document are:

Number | Name

0 Invalid

1 None

2 VNC Authentication

Other registered security types are:

6.1 INITIAL HANDSHAKING MESSAGES 9

Number | Name
5 RA2

6 RA2ne
16 Tight
17 Ultra
18 TLS

Once the security-type has been decided, data specifc to that security-type follows
(see section 6.2 for details). At the end of the security handshaking phase, the protocol
normally continues with the SecurityResult message.

Note that after the security handshaking phase, it is possible that further protocol data
is over an encrypted or otherwise altered channel.

6.1 INITIAL HANDSHAKING MESSAGES 10

6.1.3 SecurityResult

The server sends a word to inform the client whether the security handshaking was

successful.
No. of bytes | Type [Value] | Description
4 U32 status:
0 OK
1 failed

If successful, the protocol continues with the Clientlnitialisation message.

Version 3.8 onwards If unsuccessful, the server sends a string describing the reason
for the failure, and then closes the connection:

No. of bytes | Type [Value] | Description
4 U32 reason-length
reason-length | U8 array reason-string

Version 3.3 and 3.7 If unsuccessful, the server closes the connection.

6.1 INITIAL HANDSHAKING MESSAGES 11

6.1.4 ClientInitialisation

Once the client and server are sure that they’re happy to talk to one another using the
agreed security type, the client sends an initialisation message:

No. of bytes | Type [Value] | Description
1 U8 shared-zag

Shared-rag is non-zero (true) if the server should try to share the desktop by leaving
other clients connected, zero (false) if it should give exclusive access to this client by
disconnecting all other clients.

6.1 INITIAL HANDSHAKING MESSAGES 12

6.1.5 Serverlnitialisation

After receiving the Clientlnitialisation message, the server sends a Serverlnitialistion
message. This tells the client the width and height of the server’s framebuffer, its pixel
format and the name associated with the desktop:

No. of bytes | Type [Value] | Description

2 Ulé6 framebuffer-width
2 Ul6 framebuffer-height
16 PIXEL_FORMAT server-pixel-format
4 U32 name-length
name-length | U8 array name-string

where PIXEL_ FORMAT is

No. of bytes | Type [Value] | Description

1 U8 bits-per-pixel

1 U8 depth

1 Us big-endian-rag
1 Us true-colour-nag
2 Ulé6 red-max

2 Ule green-max

2 Ulé6 blue-max

1 Us red-shift

1 Us green-shift

1 U8 blue-shift

3 padding

Server-pixel-format specifes the server’s natural pixel format. This pixel format will
be used unless the client requests a different format using the SetPixelFormat message
(section 6.3.1).

Bits-per-pixel is the number of bits used for each pixel value on the wire. This must
be greater than or equal to the depth which is the number of useful bits in the pixel
value. Currently bits-per-pixel must be 8, 16 or 32 — less than 8-bit pixels are not yet
supported. Big-endian-aag is non-zero (true) if multi-byte pixels are interpreted as big
endian. Of course this is meaningless for 8 bits-per-pixel.

If true-colour-oag is non-zero (true) then the last six items specify how to extract the
red, green and blue intensities from the pixel value. Red-max is the maximum red
value (= 2" — 1 where n is the number of bits used for red). Note this value is always
in big endian order. Red-shift is the number of shifts needed to get the red value in a
pixel to the least signifcant bit. Green-max, green-shift and blue-max, blue-shift are
similar for green and blue. For example, to £nd the red value (between 0 and red-max)
from a given pixel, do the following:

e Swap the pixel value according to big-endian-rag (e.g. if big-endian-oag is zero
(false) and host byte order is big endian, then swap).

6.1 INITIAL HANDSHAKING MESSAGES 13

e Shift right by red-shift.

e AND with red-max (in host byte order).

If true-colour-pag is zero (false) then the server uses pixel values which are not directly
composed from the red, green and blue intensities, but which serve as indices into a
colour map. Entries in the colour map are set by the server using the SetColourMapEn-
tries message (section 6.4.2).

6.2 SECURITY TYPES

6.2 Security Types

14

6.2 SECURITY TYPES
6.2.1 None
No authentication is needed and protocol data is to be sent unencryptyed.

Version 3.8 onwards The protocol continues with the SecurityResult message.

Version 3.3 and 3.7 The protocol continues with the Clientlnitialisation message.

15

6.2 SECURITY TYPES 16

6.2.2 VNC Authentication

VNC authentication is to be used and protocol data is to be sent unencryptyed. The
server sends a random 16-byte challenge:

No. of bytes | Type [Value] | Description
16 U8 challenge

The client encrypts the challenge with DES, using a password supplied by the user as
the key, and sends the resulting 16-byte response:

No. of bytes | Type [Value] | Description
16 U8 response

The protocol continues with the SecurityResult message.

6.3 CLIENT TO SERVER MESSAGES

6.3 Client to server messages

17

6.3 CLIENT TO SERVER MESSAGES 18

6.3.1 SetPixelFormat

Sets the format in which pixel values should be sent in FramebufferUpdate messages.
If the client does not send a SetPixelFormat message then the server sends pixel values
in its natural format as specifed in the Serverlnitialisation message (section 6.1.5).

If true-colour-oag is zero (false) then this indicates that a “colour map” is to be used.
The server can set any of the entries in the colour map using the SetColourMapEntries
message (section 6.4.2). Immediately after the client has sent this message the colour
map is empty, even if entries had previously been set by the server.

No. of bytes | Type [Value] | Description

1 U8 0 message-type
3 padding

16 PIXEL_FORMAT pixel-format

where PIXEL_FORMAT is as described in section 6.1.5:

No. of bytes | Type [Value] | Description

1 U8 bits-per-pixel

1 U8 depth

1 U8 big-endian-rag
1 Us true-colour-nag
2 Ulé6 red-max

2 Ule green-max

2 Ulé6 blue-max

1 Us red-shift

1 Us green-shift

1 U8 blue-shift

3 padding

6.3 CLIENT TO SERVER MESSAGES

6.3.2 FixColourMapEntries

This message no longer exists. It used to be message-type one.

19

6.3 CLIENT TO SERVER MESSAGES 20

6.3.3 SetEncodings

Sets the encoding types in which pixel data can be sent by the server. The order of the
encoding types given in this message is a hint by the client as to its preference (the £rst
encoding specifed being most preferred). The server may or may not choose to make
use of this hint. Pixel data may always be sent in raw encoding even if not specifed
explicitly here.

In addition to genuine encodings, a client can request “pseudo-encodings” to declare
to the server that it supports certain extensions to the protocol. A server which does not
support the extension will simply ignore the pseudo-encoding. Note that this means
the client must assume that the server does not support the extension until it gets some
extension-specifc confrmation from the server.

See section 6.5 for the format of the data for each encoding and section 6.6 for the
meaning of pseudo-encodings.

No. of bytes | Type [Value] | Description

1 U8 2 message-type

1 padding

2 Ule6 number-of-encodings

followed by number-of-encodings repetitions of the following:

No. of bytes | Type [Value] Description
4 U32 encoding-type
0 Raw encoding
1 CopyRect encoding
2 RRE encoding
4 CoRRE encoding
5 Hextile encoding
16 ZRLE encoding
Oxffftff11 Cursor pseudo-encoding
Ox fftfff21 DesktopSize pseudo-encoding

Other registered encodings

6,7,8 zlib, tight, zlibhex
Oxffffff00 to Ox {10
Oxffftff12 to Ox 20
Oxfffftf22 to Oxffffffff | tight options

6.3 CLIENT TO SERVER MESSAGES 21

6.3.4 FramebufferUpdateRequest

Notifes the server that the client is interested in the area of the framebuffer specifed
by x-position, y-position, width and height. The server usually responds to a Frame-
bufferUpdateRequest by sending a FramebufferUpdate. Note however that a single
FramebufferUpdate may be sent in reply to several FramebufferUpdateRequests.

The server assumes that the client keeps a copy of all parts of the framebuffer in which
it is interested. This means that normally the server only needs to send incremental
updates to the client.

However, if for some reason the client has lost the contents of a particular area which it
needs, then the client sends a FramebufferUpdateRequest with incremental set to zero
(false). This requests that the server send the entire contents of the specifed area as
soon as possible. The area will not be updated using the CopyRect encoding.

If the client has not lost any contents of the area in which it is interested, then it
sends a FramebufferUpdateRequest with incremental set to non-zero (true). If and
when there are changes to the specifed area of the framebuffer, the server will send a
FramebufferUpdate. Note that there may be an inde£nite period between the Frame-
bufferUpdateRequest and the FramebufferUpdate.

In the case of a fast client, the client may want to regulate the rate at which it sends
incremental FramebufferUpdateRequests to avoid hogging the network.

No. of bytes | Type [Value] | Description

1 U8 3 message-type
1 U8 incremental
2 Ul6 X-position

2 Ulé6 y-position

2 Ulé6 width

2 Ulé6 height

6.3 CLIENT TO SERVER MESSAGES

6.3.5 KeyEvent

22

A key press or release. Down-rag is non-zero (true) if the key is now pressed, zero
(false) if it is now released. The key itself is specifed using the “keysym” values

de£ned by the X Window System.

No. of bytes | Type [Value] | Description

1 U8 4 message-type
1 Us down-pag

2 padding

4 U32 key

For most ordinary keys, the “keysym” is the same as the corresponding ASCII value.
For full details, see The Xlib Reference Manual, published by O’Reilly & Associates,
or see the header £le <X11/keysymdef.h> from any X Window System installa-
tion. Some other common keys are:

Key name Keysym value
BackSpace 0xff08
Tab 0xff09
Return or Enter | OxffOd
Escape O0xff1b
Insert 0xff63
Delete Oxffff
Home 0xff50
End 0xft57
Page Up 0xffs55
Page Down 0xff56
Left 0xff51
Up 0xft52
Right 0xff53
Down 0xff54

Key name Keysym value
F1 Oxffbe
F2 Oxffbf
F3 OxffcO
F4 Oxffcl
F12 Oxffc9
Shift (left) Oxffel
Shift (right) Oxffe2
Control (left) | Oxffe3
Control (right) | Oxffe4
Meta (left) Oxffe7
Meta (right) 0xffe8
Alt (left) Oxffe9
Alt (right) Oxffea

The interpretation of keysyms is a complex area. In order to be as widely interoperable
as possible the following guidelines should be used:

e The “shift state” (i.e. whether either of the Shift keysyms are down) should only
be used as a hint when interpreting a keysym. For example, on a US keyboard
the *#° character is shifted, but on a UK keyboard it is not. A server with a US
keyboard receiving a '#’ character from a client with a UK keyboard will not
have been sent any shift presses. In this case, it is likely that the server will
internally need to “fake” a shift press on its local system, in order to get a *#
character and not, for example, a ’3’.

e The difference between upper and lower case keysyms is signifcant. This is
unlike some of the keyboard processing in the X Window System which treats
them as the same. For example, a server receiving an uppercase A’ keysym

6.3

CLIENT TO SERVER MESSAGES 23

without any shift presses should interpret it as an uppercase *A’. Again this may
involve an internal “fake” shift press.

Servers should ignore “lock” keysyms such as CapsLock and NumLock where
possible. Instead they should interpret each character-based keysym according
to its case.

Unlike Shift, the state of modifer keys such as Control and Alt should be taken
as modifying the interpretation of other keysyms. Note that there are no keysyms
for ASCII control characters such as ctrl-a - these should be generated by view-
ers sending a Control press followed by an ’a’ press.

On a viewer where modifers like Control and Alt can also be used to generate
character-based keysyms, the viewer may need to send extra “release” events
in order that the keysym is interpreted correctly. For example, on a German PC
keyboard, ctrl-alt-q generates the * @’ character. In this case, the viewer needs to
send “fake” release events for Control and Alt in order that the @’ character is
interpreted correctly (ctrl-alt-@ is likely to mean something completely different
to the server).

There is no universal standard for “backward tab” in the X Window System.
On some systems shift+tab gives the keysym “ISO_Left_Tab”, on others it gives
a private “BackTab” keysym and on others it gives “Tab” and applications tell
from the shift state that it means backward-tab rather than forward-tab. In the
RFB protocol the latter approach is preferred. Viewers should generate a shifted
Tab rather than ISO_Left_Tab. However, to be backwards-compatible with ex-
isting viewers, servers should also recognise ISO_Left_Tab as meaning a shifted
Tab.

6.3 CLIENT TO SERVER MESSAGES 24

6.3.6 PointerEvent

Indicates either pointer movement or a pointer button press or release. The pointer is
now at (X-position, y-position), and the current state of buttons 1 to 8 are represented
by bits 0 to 7 of button-mask respectively, 0 meaning up, 1 meaning down (pressed).

On a conventional mouse, buttons 1, 2 and 3 correspond to the left, middle and right
buttons on the mouse. On a wheel mouse, each step of the wheel upwards is repre-
sented by a press and release of button 4, and each step downwards is represented by
a press and release of button 5.

No. of bytes | Type [Value] | Description

1 U8 5 message-type
1 U8 button-mask
2 Ule6 X-position

2 Ulé6 y-position

6.3 CLIENT TO SERVER MESSAGES 25

6.3.7 ClientCutText

The client has new ISO 8859-1 (Latin-1) text in its cut buffer. End of lines are repre-
sented by the linefeed / newline character (value 10) alone. No carriage-return (value

13) is needed. There is currently no way to transfer text outside the Latin-1 character
set.

No. of bytes | Type [Value] | Description

1 U8 6 message-type
3 padding
4 U32 length

length U8 array text

6.4 SERVER TO CLIENT MESSAGES

6.4 Server to client messages

26

6.4 SERVER TO CLIENT MESSAGES 27

6.4.1 FramebufferUpdate

A framebuffer update consists of a sequence of rectangles of pixel data which the client
should put into its framebuffer. It is sent in response to a FramebufferUpdateRequest
from the client. Note that there may be an inde£nite period between the Framebuffer-
UpdateRequest and the FramebufferUpdate.

No. of bytes | Type [Value] | Description

1 U8 0 message-type

1 padding

2 Ul6 number-of-rectangles

This is followed by number-of-rectangles rectangles of pixel data. Each rectangle
consists of:

No. of bytes | Type [Value] Description
2 Ul6 X-position
2 Ulé6 y-position
2 Ulé6 width
2 Ulé6 height
4 U32 encoding-type:
0 Raw encoding
1 CopyRect encoding
2 RRE encoding
4 CoRRE encoding
5 Hextile encoding
16 ZRLE encoding
Oxfftfff11 Cursor pseudo-encoding
Oxffffff21 DesktopSize pseudo-encoding
Other registered encodings
6,7,8 zlib, tight, zlibhex
Oxftffffo0 to Oxftfftf10
Oxftfftf12 to Oxffftf20
Oxffffff22 to Oxfffffff | tight options

followed by the pixel data in the specifed encoding. See section 6.5 for the format of
the data for each encoding and section 6.6 for the meaning of pseudo-encodings.

6.4 SERVER TO CLIENT MESSAGES 28

6.4.2 SetColourMapEntries

When the pixel format uses a “colour map”, this message tells the client that the spec-
ifed pixel values should be mapped to the given RGB intensities.

No. of bytes | Type [Value] | Description

1 Us 1 message-type

1 padding

2 Ul6 £rst-colour

2 Ul6 number-of-colours

followed by number-of-colours repetitions of the following:

No. of bytes | Type [Value] | Description
2 Ulé6 red

2 Ule green

2 Ulé6 blue

6.4 SERVER TO CLIENT MESSAGES

6.4.3 Bell

Ring a bell on the client if it has one.

No. of bytes

Type

[Value]

Description

1

U8

2

message-type

29

6.4 SERVER TO CLIENT MESSAGES 30

6.4.4 ServerCutText

The server has new ISO 8859-1 (Latin-1) text in its cut buffer. End of lines are repre-
sented by the linefeed / newline character (value 10) alone. No carriage-return (value
13) is needed. There is currently no way to transfer text outside the Latin-1 character
set.

No. of bytes | Type [Value] | Description

1 Us 3 message-type
3 padding

4 U32 length

length U8 array text

6.5 ENCODINGS

6.5 Encodings

31

6.5 ENCODINGS 32

6.5.1 Raw encoding

The simplest encoding type is raw pixel data. In this case the data consists of width x
height pixel values (where width and height are the width and height of the rectan-
gle). The values simply represent each pixel in left-to-right scanline order. All RFB
clients must be able to cope with pixel data in this raw encoding, and RFB servers
should only produce raw encoding unless the client specifcally asks for some other
encoding type.

No. of bytes Type [Value] | Description
width x height x bytesPerPixel | PIXEL array pixels

6.5 ENCODINGS 33

6.5.2 CopyRect encoding

The CopyRect (copy rectangle) encoding is a very simple and ef£cient encoding which
can be used when the client already has the same pixel data elsewhere in its frame-
buffer. The encoding on the wire simply consists of an X,Y coordinate. This gives a
position in the framebuffer from which the client can copy the rectangle of pixel data.
This can be used in a variety of situations, the most obvious of which are when the user
moves a window across the screen, and when the contents of a window are scrolled.
A less obvious use is for optimising drawing of text or other repeating patterns. An
intelligent server may be able to send a pattern explicitly only once, and knowing the
previous position of the pattern in the framebuffer, send subsequent occurrences of the
same pattern using the CopyRect encoding.

No. of bytes | Type [Value] | Description
2 Ule6 src-x-position
2 Ulé6 src-y-position

6.5 ENCODINGS 34

6.5.3 RRE encoding

RRE stands for rise-and-run-length encoding and as its name implies, it is essentially
a two-dimensional analogue of run-length encoding. RRE-encoded rectangles arrive at
the client in a form which can be rendered immediately and effciently by the simplest
of graphics engines. RRE is not appropriate for complex desktops, but can be useful
in some situations.

The basic idea behind RRE is the partitioning of a rectangle of pixel data into rect-
angular subregions (subrectangles) each of which consists of pixels of a single value
and the union of which comprises the original rectangular region. The near-optimal
partition of a given rectangle into such subrectangles is relatively easy to compute.

The encoding consists of a background pixel value, V}, (typically the most prevalent
pixel value in the rectangle) and a count NV, followed by a list of NV subrectangles, each
of which consists of a tuple < v, x,y, w, h > where v (# V}) is the pixel value, (z,y)
are the coordinates of the subrectangle relative to the top-left corner of the rectangle,
and (w, h) are the width and height of the subrectangle. The client can render the
original rectangle by drawing a £lled rectangle of the background pixel value and then
drawing a £lled rectangle corresponding to each subrectangle.

On the wire, the data begins with the header:

No. of bytes Type [Value] | Description
4 U32 number-of-subrectangles
bytesPerPizrel | PIXEL background-pixel-value

This is followed by number-of-subrectangles instances of the following structure:

No. of bytes Type [Value] | Description
bytesPerPizel | PIXEL subrect-pixel-value
2 Ulé6 X-position

2 Ule y-position

2 Ulé6 width

2 Ule height

6.5 ENCODINGS 35

6.5.4 CoRRE encoding

Note: the CoRRE encoding is deprecated - Hextile is a better encoding using the same
ideas.

CoRRE (Compact RRE) is a variant of RRE, where we guarantee that the largest rect-
angle sent is no more than 255x255 pixels. A server which wants to send a rectangle
larger than this simply splits it up and sends several smaller RFB rectangles. Within
each of these smaller rectangles, a single byte can then be used to represent the di-
mensions of the subrectangles. For a typical desktop, this results in better compression
than RRE. In fact, the best compression is achieved when we limit the rectangle size
even more - current implementations use a maximum of 48x48. This is because rectan-
gles which do not encode well (typically those containing image data) are sent as raw,
while the ones which do encode well are sent as CoORRE. The smaller the maximum
rectangle size, the £ner the granularity of this decision. With RRE, the whole original
rectangle must either be sent as RRE, or the whole thing sent as raw. However, since
there is a certain overhead incurred by each RFB rectangle, making the maximum
rectangle size too small (and thus increasing the number of RFB rectangles), results in
worse compression.

The data begins with the header:

No. of bytes Type [Value] | Description
4 U32 number-of-subrectangles
bytesPerPizel | PIXEL background-pixel-value

This is followed by number-of-subrectangles instances of the following structure:

No. of bytes Type [Value] | Description
bytesPerPizel | PIXEL subrect-pixel-value
1 Us X-position

1 U8 y-position

1 U8 width

1 U8 height

6.5 ENCODINGS 36

6.5.5 Hextile encoding

Hextile is a variation on the CoRRE idea. Rectangles are split up into 16x16 tiles,
allowing the dimensions of the subrectangles to be specifed in 4 bits each, 16 bits
in total. Unlike CoRRE, tiles are not top-level RFB rectangles. When splitting the
original rectangle into tiles this is done in a predetermined way. This means that the
position and size of each tile do not have to be explicitly specifed - the encoded con-
tents of the tiles simply follow one another in the predetermined order. The ordering
of tiles that we use is starting at the top left going in left-to-right, top-to-bottom order.
If the width of the whole rectangle is not an exact multiple of 16 then the width of
the last tile in each row will be correspondingly smaller. Similarly if the height of the
whole rectangle is not an exact multiple of 16 then the height of each tile in the £nal
row will also be smaller.

Each tile is either encoded as raw pixel data, or as a variation on RRE. Each tile has
a background pixel value, as before. However, the background pixel value does not
need to be explicitly specifed for a given tile if it is the same as the background of the
previous tile. If all of the subrectangles of a tile have the same pixel value, this can be
specifed once as a foreground pixel value for the whole tile. As with the background,
the foreground pixel value can be left unspecifed, meaning it is carried over from the
previous tile.

So the data consists of each tile encoded in order. Each tile begins with a subencoding
type byte, which is a mask made up of a number of bits:

No. of bytes | Type [Value] | Description

1 U8 subencoding-mask:
Raw
BackgroundSpecifed
ForegroundSpecifed
AnySubrects
SubrectsColoured

0 A —

—
(o)}

If the Raw bit is set then the other bits are irrelevant; width x height pixel values
follow (where width and height are the width and height of the tile). Otherwise the
other bits in the mask are as follows:

BackgroundSpecifed - if set, a pixel value follows which specifes the background
colour for this tile:

No. of bytes Type [Value] | Description
bytesPerPizel | PIXEL background-pixel-value

The £rst non-raw tile in a rectangle must have this bit set. If this bit isn’t set then
the background is the same as the last tile.

ForegroundSpecifed - if set, a pixel value follows which specifes the foreground
colour to be used for all subrectangles in this tile:

6.5 ENCODINGS 37

No. of bytes Type [Value] | Description
bytesPer Pizel | PIXEL foreground-pixel-value

If this bit is set then the SubrectsColoured bit must be zero.

AnySubrects - if set, a single byte follows giving the number of subrectangles fol-
lowing:

No. of bytes | Type [Value] | Description
1 Us number-of-subrectangles

If not set, there are no subrectangles (i.e. the whole tile is just solid background
colour).

SubrectsColoured - if set then each subrectangle is preceded by a pixel value giving
the colour of that subrectangle, so a subrectangle is:

No. of bytes Type [Value] | Description
bytesPerPizel | PIXEL subrect-pixel-value
1 U8 x-and-y-position

1 Us width-and-height

If not set, all subrectangles are the same colour, the foreground colour; if the
ForegroundSpecifed bit wasn’t set then the foreground is the same as the last
tile. A subrectangle is:

No. of bytes | Type [Value] | Description
1 Us x-and-y-position
1 Us width-and-height

The position and size of each subrectangle is specifed in two bytes, x-and-y-position
and width-and-height. The most-signif£cant four bits of x-and-y-position specify the X
position, the least-signif£cant specify the Y position. The most-signi£cant four bits of
width-and-height specify the width minus one, the least-signifcant specify the height
minus one.

6.5 ENCODINGS 38

6.5.6 ZRLE encoding

ZRLE stands for Zlib' Run-Length Encoding, and combines zlib compression, tiling,
palettisation and run-length encoding. On the wire, the rectangle begins with a 4-byte
length £eld, and is followed by that many bytes of zlib-compressed data. A single zlib
“stream” object is used for a given RFB protocol connection, so that ZRLE rectangles
must be encoded and decoded strictly in order.

No. of bytes | Type [Value] | Description
4 U32 length
length U8 array zlibData

The zlibData when uncompressed represents tiles of 64x64 pixels in left-to-right,
top-to-bottom order, similar to hextile. If the width of the rectangle is not an exact
multiple of 64 then the width of the last tile in each row is smaller, and if the height of
the rectangle is not an exact multiple of 64 then the height of each tile in the £nal row
is smaller.

ZRLE makes use of a new type CPIXEL (compressed pixel). This is the same as a
PIXEL for the agreed pixel format, except where true-colour-eag is non-zero, bits-
per-pixel is 32, depth is 24 or less and all of the bits making up the red, green and
blue intensities £t in either the least signi£cant 3 bytes or the most signi£cant 3 bytes.
In this case a CPIXEL is only 3 bytes long, and contains the least signifcant or the
most signifcant 3 bytes as appropriate. bytesPer(C Pixel is the number of bytes in a
CPIXEL.

Each tile begins with a subencoding type byte. The top bit of this byte is set if the tile
has been run-length encoded, clear otherwise. The bottom seven bits indicate the size
of the palette used - zero means no palette, one means that the tile is of a single colour,
2 to 127 indicate a palette of that size. The possible values of subencoding are:

0 - Raw pixel data. width x height pixel values follow (where width and height
are the width and height of the tile):

No. of bytes Type [Value] | Description

width x height x bytesPerC Pixel | CPIXEL array pizels

1 - A solid tile consisting of a single colour. The pixel value follows:

No. of bytes Type [Value] | Description
bytesPerC Pixel | CPIXEL pixelValue

2 to 16 - Packed palette types. Followed by the palette, consisting of paletteSize(=
subencoding) pixel values. Then the packed pixels follow, each pixel repre-
sented as a bit £eld yielding an index into the palette (0 meaning the £rst palette

Ysee http://www.gzip.org/zlib/

6.5 ENCODINGS 39

entry). For paletteSize 2, a 1-bit £eld is used, for paletteSize 3 or 4 a 2-bit
£eld is used and for paletteSize from 5 to 16 a 4-bit £eld is used. The bit £elds
are packed into bytes, the most signifcant bits representing the leftmost pixel
(i.e. big endian). For tiles not a multiple of 8, 4 or 2 pixels wide (as appropri-
ate), padding bits are used to align each row to an exact number of bytes.

No. of bytes Type [Value] | Description
paletteSize x bytesPerC Pixel | CPIXEL array palette
m U8 array packedPixels

where m is the number of bytes representing the packed pixels. For paletteSize
of 2 this is floor((width + 7)/8) x height, for paletteSize of 3 or 4 this is
floor((width+3)/4) x height, for paletteSize of 5 to 16 this is floor((width+
1)/2) x height.

17 to 127 - unused (no advantage over palette RLE).

128 - Plain RLE. Consists of a number of runs, repeated until the tile is done. Runs
may continue from the end of one row to the beginning of the next. Each run
is a represented by a single pixel value followed by the length of the run. The
length is represented as one or more bytes. The length is calculated as one more
than the sum of all the bytes representing the length. Any byte value other than
255 indicates the £nal byte. So for example length 1 is represented as [0], 255
as [254], 256 as [255,0], 257 as [255,1], 510 as [255,254], 511 as [255,255,0]

and so on.
No. of bytes Type [Value] | Description
bytesPerC Pixel CPIXEL pizelValue
floor((runLength —1)/255) | U8 array 255
1 U8 (runLength — 1)%255
129 - unused

130 to 255 - Palette RLE. Followed by the palette, consisting of paletteSize =
(subencoding — 128) pixel values:

No. of bytes Type [Value] | Description
paletteSize x bytesPerC Pixel | CPIXEL array palette

Then as with plain RLE, consists of a number of runs, repeated until the tile is
done. A run of length one is represented simply by a palette index:

No. of bytes | Type [Value] | Description
1 U8 paletteIndex

6.5 ENCODINGS

40

A run of length more than one is represented by a palette index with the top bit
set, followed by the length of the run as for plain RLE.

No. of bytes Type [Value] | Description

1 U8 paletteIndex + 128
floor((runLength — 1)/255) | U8 array 255

1 U8

(runLength — 1)%255

6.6 ENCODINGS

6.6 Pseudo-encodings

41

6.6 ENCODINGS 42

6.6.1 Cursor pseudo-encoding

A client which requests the Cursor pseudo-encoding is declaring that it is capable of
drawing a mouse cursor locally. This can signifcantly improve perceived performance
over slow links. The server sets the cursor shape by sending a pseudo-rectangle with
the Cursor pseudo-encoding as part of an update. The pseudo-rectangle’s X-position
and y-position indicate the hotspot of the cursor, and width and height indicate the
width and height of the cursor in pixels. The data consists of width x height pixel
values followed by a bitmask. The bitmask consists of left-to-right, top-to-bottom
scanlines, where each scanline is padded to a whole number of bytes floor((width +
7)/8). Within each byte the most signifcant bit represents the leftmost pixel, with a
1-bit meaning the corresponding pixel in the cursor is valid.

No. of bytes Type [Value] | Description
width x height x bytesPer Pizel | PIXEL array cursor-pixels
floor((width 4 7)/8) x height U8 array bitmask

6.6 ENCODINGS 43

6.6.2 DesktopSize pseudo-encoding

A client which requests the DesktopSize pseudo-encoding is declaring that it is capable
of coping with a change in the framebuffer width and/or height. The server changes
the desktop size by sending a pseudo-rectangle with the DesktopSize pseudo-encoding
as the last rectangle in an update. The pseudo-rectangle’s X-position and y-position are
ignored, and width and height indicate the new width and height of the framebuffer.
There is no further data associated with the pseudo-rectangle.

